ASSIGNMENT SET - I

Mathematics: Semester-I

M.Sc (CBCS)

Department of Mathematics

Mugberia Gangadhar Mahavidyalaya

PAPER - MTM-101

Paper: Real Analysis

1. Check whether the function

$$
f(x)=|x-1|+|x| \text { on }[0,3] \text { is a function of bounded variation }
$$ or not. If so also find the variation function of f on $[0,3]$.

2. Show that collection M of all measurable set is a σ algebra.
3. The function f is defined on $[0,1]$ by

$$
f(x)=\left\{\begin{array}{c}
n, \text { if } x \in Q^{c} \cap[0,1] \\
0, \text { if } x \in Q \cap[0,1]
\end{array} \text { where } \mathrm{n}\right. \text { denotes the number of zeros }
$$ immediately after the decimal scale .show that f is measurable and find $\int f d x$.

4. Let f be an extended real valued function whose domain D is measurable. Then show that following are equivalent -
(i) $\{x \in D: f(x)>\alpha\}$ is measurable.
(ii) $\{x \in D: f(x) \geq \alpha\}$ is measurable.
(iii) $\{x \in D: f(x)<\alpha\}$ is measurable.
5. Prove that outer measure of an interval is its length.
6. If $m^{*}(E)=0$ then prove that E is a measurable set.
7. Let f be a continuous function defined on a closed set D. Then prove that f is measurable .

Is converse also true? Justify your answer.
8. Define outer measure of a set $A \subseteq \mathbb{R}$.
9. If $\mathrm{f}(\mathrm{x})$ is measurable defined on a measurable domain D and $f \sim g$ on D then prove that $g(x)$ is also measurable .
10. Define characteristic function defined on a set $A \subseteq \mathbb{R}$.
11. Prove that characteristic function defined on set A is measurable if and only if A is measurable . 4
12. What is σ algebra
13. Prove that outer measure of cantor set is zero.
14. check if E is measurable or not of the following sets
(i) $E=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=\frac{1}{K^{2}}\right.$ for all $K \in \mathbb{N}$ and $x \in \mathbb{Q}$ and $\left.y \in \mathbb{Q}\right\}$
(ii) $E=\mathbb{Q} \times \mathbb{Q} \times \ldots \times \mathbb{Q}(100$ times $)$
15. If is measurable then prove that $E+x$ is measurable and $m(E+x)=m(E) \quad 2$
16. Establish a necessary and sufficient condition for a function $f:[a, b] \rightarrow \mathbb{R}$ to be a function of bounded variation on $[a, b]$. 5
17. Show that the set of all functions of bounded variation on $[a, b]$ forms a vector space under usual addition and multiplication by scalars.
18. State and prove Monotone Convergence theorem.
19. Show that every bounded measurable function on $[a, b]$ is Lebesgue integrable on $[a, b]$. 5
20. Calculate the Lebesgue integral for the function

$$
f(x)= \begin{cases}1 & , \text { when } x \text { is rational } \\ 2 & , \text { when } x \text { is irrational }\end{cases}
$$

21. If $f(x)=\left\{\begin{array}{c}\frac{1}{x}, \text { if } 0<x \leq 1 \\ 9, \text { if } x=0\end{array} \quad\right.$ then show that f is not Lebesgue integrable. 4
22. Show that outer measure of a singleton set is zero.
23. Show that every path connected metric space is connected. Give an example to show that the converse is not true .
24. Show that if a metric space X is compact then it is closed and bounded 5
25. Let $\left\{E_{n}\right\}$ be a sequence of measurable set such that

$$
E_{1} \subset E_{2} \subset \ldots . \subset E_{n} \subset \ldots .
$$

and if $E=\cup_{n=1}^{\infty} E_{n}$ then prove that $\left.\underset{n \rightarrow \infty}{\mathrm{~m}} \underset{n}{\mathrm{E}}\right)=\lim m\left(E_{n}\right)$
26. If a bounded function f is Lebesgue integrable on $[a, b]$ then $|f|$ is Lebesgue integrable over $[a, b]$. Moreover if f is Lebesgue integrable then

$$
\left|\int_{a}^{b} f\right| \leq \int_{a}^{b}|f|
$$

27. Prove that the interval $(0, \infty)$ is measurable
\qquad
